Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2303269, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386787

RESUMO

In this work, the synthesis of core-shell ordered mesoporous silica nanoparticles (CSMS) with tunable particle size and shape through a dual surfactant-assisted approach is demonstrated. By varying the synthesis conditions, including the type of the solvent and the concentration of the surfactant, monodispersed and ordered mesoporous silica nanoparticles with tunable particle size (140-600 nm) and morphologies (hexagonal prism (HP), oblong, spherical, and hollow-core) can be realized. Comparative studies of the Cabazitaxel (CBZ)-loaded HP and spherical-shaped CSMS are conducted to evaluate their drug delivery efficiency to PC3 (prostate cancer) cell lines. These nanoparticles showed good biocompatibility and displayed a faster drug release at acidic pH than at basic pH. The cellular uptake of CSMS measured using confocal microscopy, flow cytometry, microplate reader, and ICP-MS (inductively coupled plasma mass spectrometry) techniques in PC3 cell lines revealed a better uptake of CSMS with HP morphology than its spherical counterparts. Cytotoxicity study showed that the anticancer activity of CBZ is improved with a higher free radical production when loaded onto CSMS. These unique materials with tunable morphology can serve as an excellent drug delivery system and will have potential applications for treating various cancers.

2.
Small ; : e2301113, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967548

RESUMO

The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.

3.
Sci Technol Adv Mater ; 23(1): 225-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875329

RESUMO

Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...